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ON SMALL PARAMETERS : A STOCHASTIC CONTROL METHOD

by

Wendell H. Fleming

This paper summarizes a stochastic control method to derive est imates

of Ventcel—Freidlin type that a solution trajectory of a stochastic differ-

ential equation hits a given set B during a given time interval. A more

detailed treatment of the method is given in the author ’s paper, “Exit

probabilities and optimal stochastic control” to appear in Applied Mathematics

and Optimization.
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LARGE DEVIATIONS FOR DIFFUSIONS DEPENDING
ON SMALL PARAMETERS: A STOCHASTIC CONTROL METHOD

Wendell H. Fleming~

ABSTRACT

This paper considers stochastic differential equations depending on

a small parameter E, which enters as a coefficient In the noise term of the
equation. The Ventcel—Freidlin estimates give an asymptotic formula as

C -
~ 0 for the probability that a solution trajectory hits a given compact

set B during a given time interval. A stochastic control method to obtain

such estimates is outlined. Detailed proofs are given elsewhere.

1. The problem. Consider a Markov diffusion process on

n—dimensional R’~ which obeys the stochastic differential equations

(1.1) d.~~
C 

= b(t,~~(t)]dt + / ~ a(t,~~ (t))dv , a < t ,

with initial data c(s) = x. Here w is an n—dimensional brownian motion

and C a positive parameter. Let B be a compact set, B CR
C
, and let

denote the first time t such that ~~(t) E B. If ~~(t) E R r1 
— B for all

t > s we set = 4~~ . Given T > a, let

(1.2) q~ = p(t~ < T) .

~Addresst Brown University, Providence, Rhode Island 02912, U.S.A. ThIB
Research was partially supported by the Air Force Office of Scientific
Research under AF—AFOSR 76—3063 and in part by the National Science Founda-
tion under NSF—MCS 76~07 2147.
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Let us also consider the unperturbed system

(1.3) = b(t ,~
0
(t)3dt, a < t,

with the same initial data ~0(~ ) x. If T~ > T, then q~ + 0 as C + 0.

The Ventcel—Freidlln estimates [3], [5] give a more precise statement about
the rate of convergence to 0 of q~, under certain assumptions about the

coefficient s b,a in (1.1) and. the set B. A different method, based on
stochastic control ideas , was used in [1], [2] to obtain estimates of
Ventcel—Freidlin type. In this note we outline this stochastic control

method, as it applies to the problem of estimating q~.

2. Upper and lower estimates. Let us assume that b is L..p~ch itz
on Rn+l and that a together with its inverse a~~ are bounded and
Lipschitz. Some results in which 0 degenerates in a particular way appear

in [141. Let a = 00’ , and. consider the variational integrand.

(2.1) L(t,4~,~ ) = ~~~ (b(t,~ ) — 3)’a~~(t,4)(b(t,P) —

Let

rB = {~ EC([s,T];R~): ~(s) = x, ) 0 E [s,T] ~~~(O) EB),

rT
(2.2) ‘B = mill L(t ,$(t),I~(t)1dt .

(The integral on the right side is defined to be 4~~ if ~ is not
absolutely continuous.) Let

(2.3) I~ = —c log q~.

Theorem 1. I < lfm inf I~ .B c+o

This theorem gives an upper estimate for q~. We shall outline a

stochastic control proof in §3, and refer to [2] for details.

In order to state a lower estimate, we make the following additional

assumption: There exists a relatively open set C F
R 

such that 
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1T
(2.14) m t  L[t,$(t),4)(t)]dt =

F° ~~
B

By relatively open we mean that given 4’ E r~ there exists 6 > 0 such that

~
) EC( (s,T];R”), tb (s) = x and ftP-4 H < 6 imply ‘P

Theorem 2. If (2.14) holds, then I > lim sup I~ .B

Theorem 2 is an immediate consequence of the first Ventcel—Freidlin

estimate [3, p. 332). That estimate is rather easily obtained from the

Girsanov formula. On the other hand, the usual proof of Theorem 1 is based
on a somewhat more technically complicated second Ventcel—Freidlin estimate

[3, p. 3314]. Our method furnishes an alternative proof, as well as a

different intuition for arriving at such results.

From Theorems 1 and 2 one has I~ + ‘B 
as C + 0, which is the

desired result about the probability of large deviations.

3. Stochastic control method. Let us fix T > 0 and. consider

O < s < T. Let Q = (O,T) X (Rn-B), and write q~ = q~(s,x). Then
q~ EC

1’2(Q) and satisfies in Q the backward parti:1 differential equation

(3.1) 
~~~~~

— + 
~~ •~~~1

a
~j
(s
~

x) 
aX
1
aX~ 

+ 
~~1

bi
(s
~

x) . = 0.

The function I~ = —C log q~ satisfies the nonlinear equation

~20
C

(3.2) + a. (s ,x) B + B(s,x,VO~) = 0,
S 

~ =1 ij  yx vx

where for each row vector p

(3.3) H(s,x,p) = — pa(s,x)p’ + p.b(s,x).

The function H(s,x,~ ) is dual to L(s,x,~ ), in the sense of duality for
concave and convex functions. If one puts formally C = 0 in (3.2), one
gets the Hamilton-Jacobi equation associated with the variational integrand L.

The tact that rB includes only curves • which reach B by time T

corresponds formally to the condition q~(T,x) = 0 for x ~ B, and hence

I~ (T ,x) = 4~~. The connection with the Hamilton—Jacobi equation indicates,
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but of course does not prove, results of the kind stated in §2.

Lemma. Let B = ~D, where D C t is open, bounded with C
2

boundary aD. The~i < urn inf for any (s,x) E (O,T) X D.
C-sO 

B

This result Is proved in [2, §1], by an argument which we sketch

below. From the Lemma, Theorem 1 is obtained as follows. There exist

P1 
C D

2 C 
... , with union Rn - B, such that ~D = B

n U 
{jxI = n}, with B

of class C2 and B contained in the n~~—neighborhood of B. We take

B = aD and note that <

urn m t  i~ > him inf I~ > ‘B- E+0 n n

Moreover , ‘B + ‘B 
as n + ~~~.

n

The proof in [2, §7] of the Lemma is based on a “penalty” function
method. Let 0(x) be Lipschitz, with 0(x) > 0 for x ~ ~D, 0(x) = 0 for

x E~ D. Let j~(s x) be the solution of (3.2) in (O,T) X D, with
J
C
(s x) = 0 for 0 < s < T , x E~ D, J

C(T ,x) = 0(x). Then J
C
(s,x) satis-

fies the dynamic programming equation for an optim~il stochastic control

problem in which the drift term btt,~~(t)) in (1.1) is replaced by an

arbitrary, bounded, nonanticipative control process v(t). Instead of (1.1),

one now has the stochastic differential equation

dli = v(t)dt + ,/~ a[t,fl(t)]dw.

The quantity to be minimized is

E{ I L(t,Tl(t),v(t))dt +
J s

where 0 = min(T, exit time from D of n(t)). The minimum of this ex-

pression is JC(s,x). It is shown in [2] that lim inf > J , where J(s,x)
to . 

c+O

Is the minimum of J L[t,4)(t),4P(t)ldt + 4[0,~ (0)) taken among all (4’,0)
5

with $(s) = x and either 0 = T or 0 < T, $(O) E 3D. For M = 1,2 ,...

we now take $ = •M = MY for fixed 1’, and write = j~~~, s = 1~. it is
easy to show that I < u r n  inf 1~. Moreover, < I~ . Then J~ < u r n  m t

- r.!, - - M
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for each M, from which the Lemma follows.
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